On the Numerical Solution of the Diffusion Equation with a Nonlocal Boundary Condition
نویسنده
چکیده
Parabolic partial differential equations with nonlocal boundary specifications feature in the mathematical modeling of many phenomena. In this paper, numerical schemes are developed for obtaining approximate solutions to the initial boundary value problem for one-dimensional diffusion equation with a nonlocal constraint in place of one of the standard boundary conditions. The method of lines (MOL) semidiscretization approach is used to transform the model partial differential equation into a system of first-order linear ordinary differential equations (ODEs). The partial derivative with respect to the space variable is approximated by a second-order finite-difference approximation. The solution of the resulting system of first-order ODEs satisfies a recurrence relation which involves a matrix exponential function. Numerical techniques are developed by approximating the exponential matrix function in this recurrence relation. We use a partial fraction expansion to compute the matrix exponential function via Pade approximations, which is particularly useful in parallel processing. The algorithm is tested on a model problem from the literature.
منابع مشابه
THE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S
In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.
متن کاملNumerical solution of Convection-Diffusion equations with memory term based on sinc method
In this paper, we study the numerical solution of Convection-Diffusion equation with a memory term subject to initial boundary value conditions. Finite difference method in combination with product trapezoidal integration rule is used to discretize the equation in time and sinc collocation method is employed in space. The accuracy and error analysis of the method are discussed. Numeric...
متن کاملImplementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary condition
The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...
متن کاملAxially Forced Vibration Analysis of Cracked a Nanorod
Thisstudy presents axially forced vibration of a cracked nanorod under harmonic external dynamically load. In constitutive equation of problem, the nonlocal elasticity theory is used. The Crack is modelled as an axial spring in the crack section. In the axial spring model, the nonrod separates two sub-nanorods and the flexibility of the axial spring represents the effect of the crack. Boundary ...
متن کاملSolutions of diffusion equation for point defects
An analytical solution of the equation describing diffusion of intrinsic point defects in semiconductor crystals has been obtained for a one-dimensional finite-length domain with the Robin-type boundary conditions. The distributions of point defects for different migration lengths of defects have been calculated. The exact analytical solution was used to verify the approximate numerical solutio...
متن کاملNumerical studies of non-local hyperbolic partial differential equations using collocation methods
The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...
متن کامل